pandas基础使用

Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据即可产生最简单的Series:

In [11]: obj = pd.Series([4, 7, -5, 3])

In [12]: obj
Out[12]: 
0    4
1    7
2   -5
3    3
dtype: int64
In [13]: obj.values
Out[13]: array([ 4,  7, -5,  3])

In [14]: obj.index  # like range(4)
Out[14]: RangeIndex(start=0, stop=4, step=1)
In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])

In [16]: obj2
Out[16]: 
d    4
b    7
a   -5
c    3
dtype: int64

In [17]: obj2.index
Out[17]: Index(['d', 'b', 'a', 'c'], dtype='object')
In [18]: obj2['a']
Out[18]: -5

In [19]: obj2['d'] = 6

In [20]: obj2[['c', 'a', 'd']]
Out[20]: 
c    3
a   -5
d    6
dtype: int64
In [21]: obj2[obj2 > 0]
Out[21]: 
d    6
b    7
c    3
dtype: int64

In [22]: obj2 * 2
Out[22]:
d    12
b    14
a   -10
c     6
dtype: int64

In [23]: np.exp(obj2)
Out[23]: 
d     403.428793
b    1096.633158
a       0.006738
c      20.085537
dtype: float64
In [24]: 'b' in obj2
Out[24]: True

In [25]: 'e' in obj2
Out[25]: False

pandas的isnull和notnull函数可用于检测缺失数据:

In [32]: pd.isnull(obj4)
Out[32]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

In [33]: pd.notnull(obj4)
Out[33]: 
California    False
Ohio           True
Oregon         True
Texas          True
dtype: bool
In [34]: obj4.isnull()

DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
        'year': [2000, 2001, 2002, 2001, 2002, 2003],
        'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)
In [45]: frame
Out[45]: 
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002
5  3.2  Nevada  2003

head方法会选取前五行:

In [46]: frame.head()
Out[46]: 
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

如果传入的列在数据中找不到,就会在结果中产生缺失值:

In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
   ....:                       index=['one', 'two', 'three', 'four',
   ....:                              'five', 'six'])

In [49]: frame2
Out[49]: 
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN
six    2003  Nevada  3.2  NaN

In [50]: frame2.columns
Out[50]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

行也可以通过位置或名称的方式进行获取,比如用loc属性

In [53]: frame2.loc['three']
Out[53]: 
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object

列可以通过赋值的方式进行修改

In [54]: frame2['debt'] = 16.5

In [55]: frame2
Out[55]: 
       year   state  pop  debt
one    2000    Ohio  1.5  16.5
two    2001    Ohio  1.7  16.5
three  2002    Ohio  3.6  16.5
four   2001  Nevada  2.4  16.5
five   2002  Nevada  2.9  16.5
six    2003  Nevada  3.2  16.5

In [56]: frame2['debt'] = np.arange(6.)

In [57]: frame2
Out[57]: 
       year   state  pop  debt
one    2000    Ohio  1.5   0.0
two    2001    Ohio  1.7   1.0
three  2002    Ohio  3.6   2.0
four   2001  Nevada  2.4   3.0
five   2002  Nevada  2.9   4.0
six    2003  Nevada  3.2   5.0

丢弃某条轴上的一个或多个项很简单,只要有一个索引数组或列表即可。由于需要执行一些数据整理和集合逻辑,所以drop方法返回的是一个在指定轴上删除了指定值的新对象:

In [105]: obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])

In [106]: obj
Out[106]: 
a    0.0
b    1.0
c    2.0
d    3.0
e    4.0
dtype: float64

In [107]: new_obj = obj.drop('c')

In [108]: new_obj
Out[108]: 
a    0.0
b    1.0
d    3.0
e    4.0
dtype: float64

In [109]: obj.drop(['d', 'c'])
Out[109]: 
a    0.0
b    1.0
e    4.0
dtype: float64

对于DataFrame,可以删除任意轴上的索引值。

In [110]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
   .....:                     index=['Ohio', 'Colorado', 'Utah', 'New York'],
   .....:                     columns=['one', 'two', 'three', 'four'])

In [111]: data
Out[111]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

用标签序列调用drop会从行标签(axis 0)删除值:

In [112]: data.drop(['Colorado', 'Ohio'])
Out[112]: 
          one  two  three  four
Utah        8    9     10    11
New York   12   13     14    15

通过传递axis=1或axis='columns'可以删除列的值:

In [113]: data.drop('two', axis=1)
Out[113]: 
          one  three  four
Ohio        0      2     3
Colorado    4      6     7
Utah        8     10    11
New York   12     14    15

In [114]: data.drop(['two', 'four'], axis='columns')
Out[114]: 
          one  three
Ohio        0      2
Colorado    4      6
Utah        8     10
New York   12     14

索引、选取和过滤

Series索引(obj[...])的工作方式类似于NumPy数组的索引,只不过Series的索引值不只是整数。下面是几个例子:

In [117]: obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])

In [118]: obj
Out[118]: 
a    0.0
b    1.0
c    2.0
d    3.0
dtype: float64

In [119]: obj['b']
Out[119]: 1.0

In [120]: obj[1]
Out[120]: 1.0

In [121]: obj[2:4]
Out[121]: 
c    2.0
d    3.0
dtype: float64

In [122]: obj[['b', 'a', 'd']]
Out[122]:
b    1.0
a    0.0
d    3.0
dtype: float64

In [123]: obj[[1, 3]]
Out[123]: 
b    1.0
d    3.0
dtype: float64

In [124]: obj[obj < 2]
Out[124]: 
a    0.0
b    1.0
dtype: float64

用一个值或序列对DataFrame进行索引其实就是获取一个或多个列:

In [128]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
   .....:                     index=['Ohio', 'Colorado', 'Utah', 'New York'],
   .....:                     columns=['one', 'two', 'three', 'four'])

In [129]: data
Out[129]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

In [130]: data['two']
Out[130]: 
Ohio         1
Colorado     5
Utah         9
New York    13
Name: two, dtype: int64

In [131]: data[['three', 'one']]
Out[131]: 
          three  one
Ohio          2    0
Colorado      6    4
Utah         10    8
New York     14   12

这种索引方式有几个特殊的情况。首先通过切片或布尔型数组选取数据: 选取行的语法data[:2]十分方便。向[ ]传递单一的元素或列表,就可选择列。

In [132]: data[:2]
Out[132]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7

In [133]: data[data['three'] > 5]
Out[133]: 
          one  two  three  four
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

另一种用法是通过布尔型DataFrame(比如下面这个由标量比较运算得出的)进行索引:

In [134]: data < 5
Out[134]: 
            one    two  three   four
Ohio       True   True   True   True
Colorado   True  False  False  False
Utah      False  False  False  False
New York  False  False  False  False

In [135]: data[data < 5] = 0

In [136]: data
Out[136]: 
          one  two  three  four
Ohio        0    0      0     0
Colorado    0    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

用loc和iloc进行选取

使用轴标签(loc)或整数索引(iloc),从DataFrame选择行和列的子集。

In [137]: data.loc['Colorado', ['two', 'three']]
Out[137]: 
two      5
three    6
Name: Colorado, dtype: int64
In [138]: data.iloc[2, [3, 0, 1]]
Out[138]: 
four    11
one      8
two      9
Name: Utah, dtype: int64

In [139]: data.iloc[2]
Out[139]: 
one       8
two       9
three    10
four     11
Name: Utah, dtype: int64

In [140]: data.iloc[[1, 2], [3, 0, 1]]
Out[140]: 
          four  one  two
Colorado     7    0    5
Utah        11    8    9
In [141]: data.loc[:'Utah', 'two']
Out[141]: 
Ohio        0
Colorado    5
Utah        9
Name: two, dtype: int64

In [142]: data.iloc[:, :3][data.three > 5]
Out[142]: 
          one  two  three
Colorado    0    5      6
Utah        8    9     10
New York   12   13     14